OFFSHORE WIND ENERGY DEVELOPMENT IN THE ADRIATIC SEA: THE P.O.W.E.R.E.D. PROJECT AS PLANNING POLICY

Università Politecnica delle Marche, Ancona, May 2013

PRESENTATION TITLE

Experience of developing an offshore wind farm in Italy. Critical issues and opportunities.

Author: Leonardo Perini Organization: wpd Italia offshore s.r.l.

- THE COMPANY
- THE PROJECT
- CHALLENGES FROM THE OFFSHORE BUSINESS
- CRITICALITIES DURING THE AUTHORIZATION PROCESS

CONCLUSION & SUGGESTIONS

Leonardo Perini

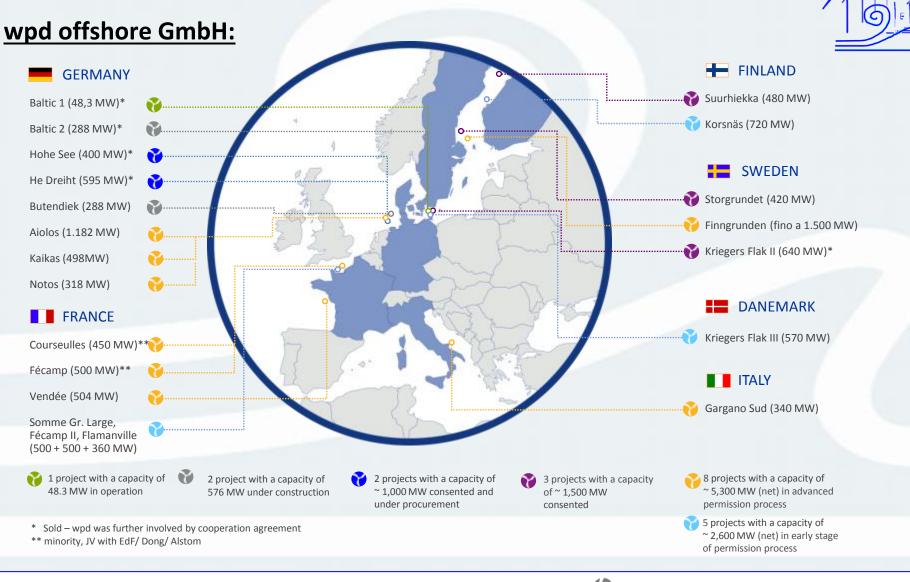
THE COMPANY

The wpd group:

- More than 2,5 GW of renewable energy power implemented and operated.
- More than 860 experienced workers.
- Various projects in 20 countries.
- 1500 turbines installed and operating.
- On going development, an ONSHORE wind projects international portfolio for a total of 6,7 GW.
- On going development, an OFFSHORE wind projects international portfolio for a total of **10 GW** with more than **3 GW** already authorized.

Leonardo Perini

wpd Italia offshore s.r.l.



altico – Ottobre 2010

uppo e costruzione i

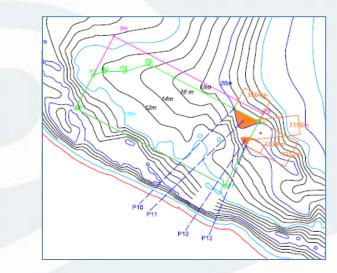
THE COMPANY

Leonardo Perini

wpd Italia offshore s.r.l.

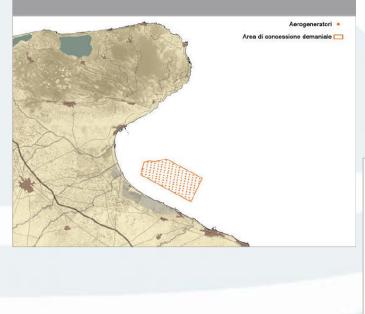
Ancona, May 2013

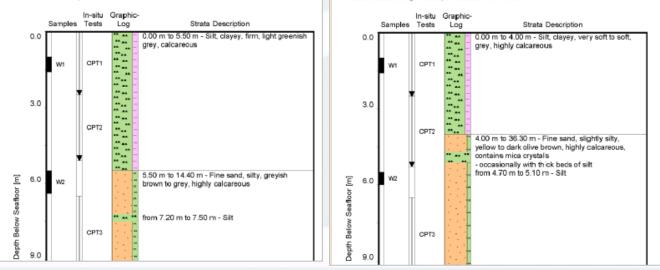
4


The project GARGANO SUD, is based on 85 wind turbines of 4 MW each, for a total of 340 MW installed.

The bathymetry range is between 14-23m

Leonardo Perini


ALTERNATIVA 1

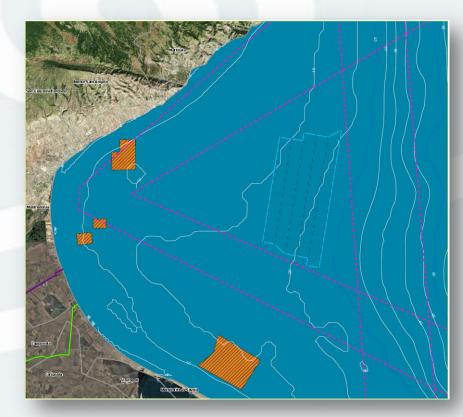

Layout composto da 167 aerogeneratori modello REpower 5M, con potenza nominale di 5 MW, diar di rotore di 126 m ed altezza al mozzo di 100 m; distanza dalla costa di 5 km.

duzione del numero degli aerogeneratori (da 167 a 146) e cambiamento del modello di turbina con l

ALTERNATIVA 3

Riduzione dell'area occupata dal progetto e del numero di aerogeneratori (da 146 a 126); distanza dalla costa di 5 km.

Leonardo Perini


wpd Italia offshore s.r.l.

Ancona, May 2013

6

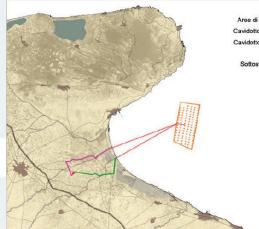
ALTERNATIVA 1

Layout composto da 167 aerogeneratori modello REpower 5M, con potenza nominale di 5 MW, diam di rotore di 126 m ed altezza al mozzo di 100 m; distanza dalla costa di 5 km.

ALTERNATIVA

iduzione del numero degli aerogeneratori (da 167 a 146) e cambiamento del modello di turbina con l

ALTERNATIVA

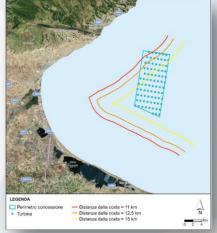

Riduzione dell'area occupata dal progetto e del numero di aerogeneratori (da 146 a 126); distanza dal costa di 5 km.

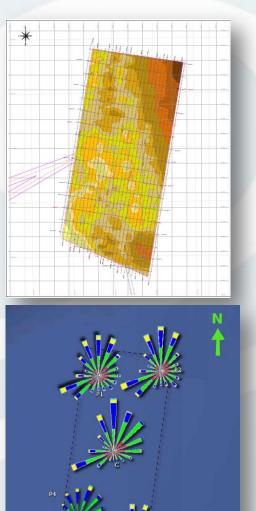
ALTERNATIVA 4

Spostamento dell'area di intervento più a large di circa 10 km rispetto alle precedenti; riduzione della stessa; riduzione del numero di aerogeneratori da 126 a 95; distanza dalla costa di circa 10,5 km.

Aerogeneratori 🗕

- Area di concessione demaniale 🗔
- Cavidotto on-shore alternativa A ----
- Cavidotto on-shore alternativa B —
- Cavidotto off-shore -----Sottostazione elettrica 380 KV •




Ancona, May 2013 7

Leonardo Perini

ALTERNATIVA 1

Layout composio da 167 aerogeneratori modello REpower 5M, con potenza nominale di 5 MW, dia di rotore di 126 m ed altezza al mozzo di 100 m; distanza dalla costa di 5 km.

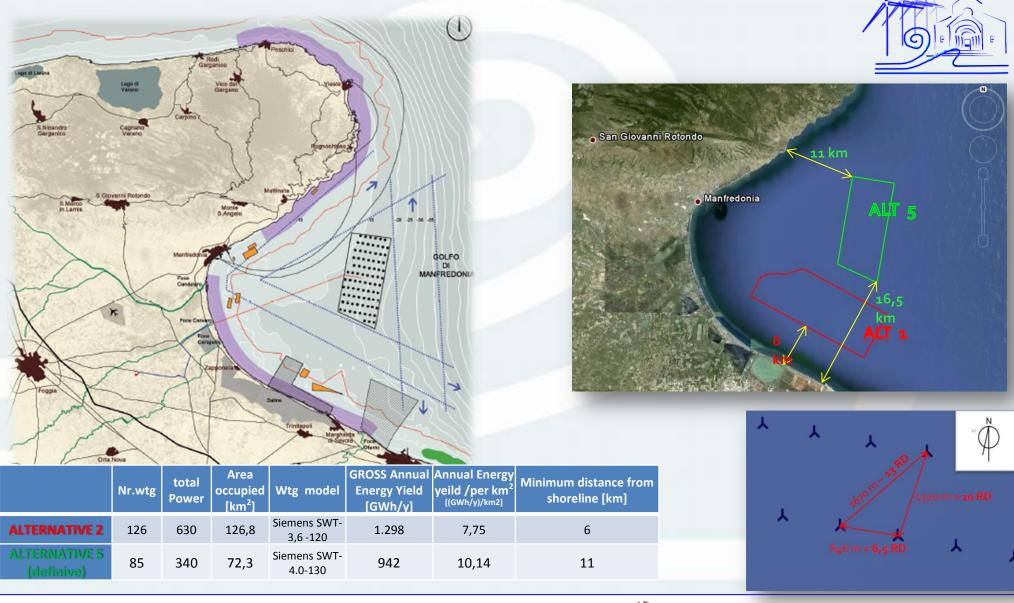
duzione del numero degli aerogeneratori (da 167 a 146) e cambiamento del modello di turbina con

ALTERNATIVA


Riduzione dell'area occupata dal progetto e del numero di aerogeneratori (da 146 a 126); distanza da costa di 5 km.

ALTERNATIVA 4

Spostamento dell'area di intervento più a largo di cirea 10 km rispetto alle precedenti; riduzione de stessa; riduzione del numero di aerogeneratori da 126 a 95; distanza dalla costa di circa 10,5 km.

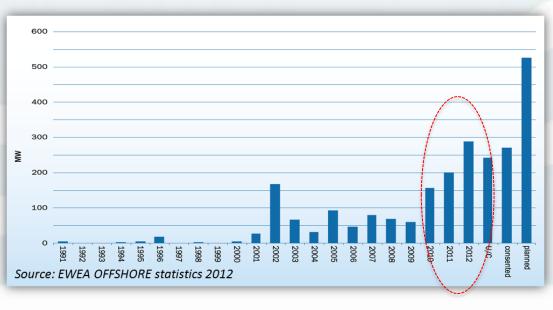

ALTERNATIVA

Riduzione del numero di aerogeneratori (da 95 a 85) e cambiamento del modello di turbina con la Siemens SWT-4.0-130, con potenza nominale di 4 MW. Ridefinizione del layout delle turbine, all'interm dello stesso specchio acqueo richiesto precedentemente in concessione, al fine di ottimizzare la produzione energetico e di ridurre ulteriormente l'impatto visivo.

Leonardo Perini

ALTERNATIVE 1

0


Leonardo Perini

CHALLENGES OF THE OFFSHORE BUSINESS

The EVOLUTION of the wind farm SIZE:

Considering **fully commissioned** projects in the last 3 years, as well as the project **under construction**, the **average size** is about 260 MW based on around 73 wind turbines.

Year of Construction or Status				N°	turbine size
	wind farm	Country	MW	turbines	[MW]
2010	Pori	FI	2,3	1	2,3
2010	Gun fleet sands I+II	UK	173	48	3,6
2010	RØdsand 2	DK	207	9 <mark>3</mark>	2,3
2010	Horns rev 2	DK	209	9 <mark>1</mark>	2,3
2010	Robin Rigg	UK	180	<mark>60</mark>	3
2010	Thanet	UK	300	10 <mark>0</mark>	3
2012	Sheringham shoal	UK	88	8 <mark>8</mark>	3,6
2012	Greater Gabbard	UK	504	140	3,6
2012	Belwind Phase I	BE	165	55	3
2012	walney Phase 1	UK	183,6	51	3,6
2012	walney Phase 2	UK	183,6	51	3,6
2012	Egmond aan Zee	NE	108	36	3
2013	TEESIDE	UK	62,1	27	2,3
2013	LONDON ARRAY phase 1	UK	630	175	3,6
under construction	Northwind	UK	216	<mark>72</mark>	3
under construction	Thorton Banks Phase 2	BE	184,5	3 <mark>0</mark>	6,15
under construction	Thorton Banks Phase 3	BE	110,7	18	6,15
under construction	Global teck	DE	400	<mark>80</mark>	5
under construction	Riffgat	DE	108	30	3,6
under construction	Brokum Phase 1	DE	200	40	5
under construction	Dan Tysk	DE	400	<mark>80</mark>	5
under construction	Meerwind Ost/Sud	DE	288	<mark>80</mark>	3,6
under construction	EnBW Baltic 2	DE	288	<mark>80</mark>	3,6
under construction	Nordsee Ost	DE	295,2	48	6,15
under construction	Dan Tysk	DE	288	<mark>80</mark>	3,6
under construction	Anholt	DK	399, 6	111	3,6
under construction	West of Duddon Sands	UK	389	108	3,6
under construction	Gwynt y mor	UK	576	160	3,6
under construction	Linc	UK	270	<mark>75</mark>	3,6

CHALLENGES OF THE OFFSHORE BUSINESS

Current most official cost figures say that :

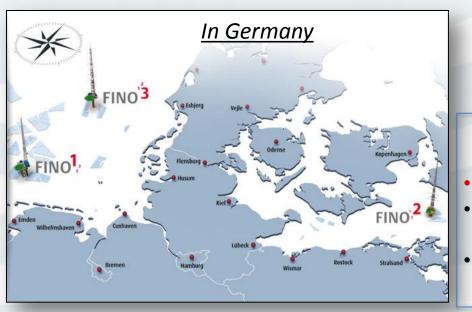
Split of investment expenditure	k€/MW	%
Wind turbine	1.547	44%
Foundation	559	16%
Electrical Infrastructure	598	17%
Installation	455	13%
Planning & Developement & Insurance & Finance	351	10%
Total	3510 k€/MW	100%

Source: The research council of Norway-2010

The purpose is reduce at least down to 3000k€/MW.

On top of that the **O&M** costs is still at **40-60 €/MWh**.

The high fixed costs inducing high project overall costs require , even more, an investment focused on optimization.


That's one reason why an offshore project tends to be at least **200 MW** or **50 turbines**.

Leonardo Perini

CHALLENGES OF THE OFFSHORE BUSINESS

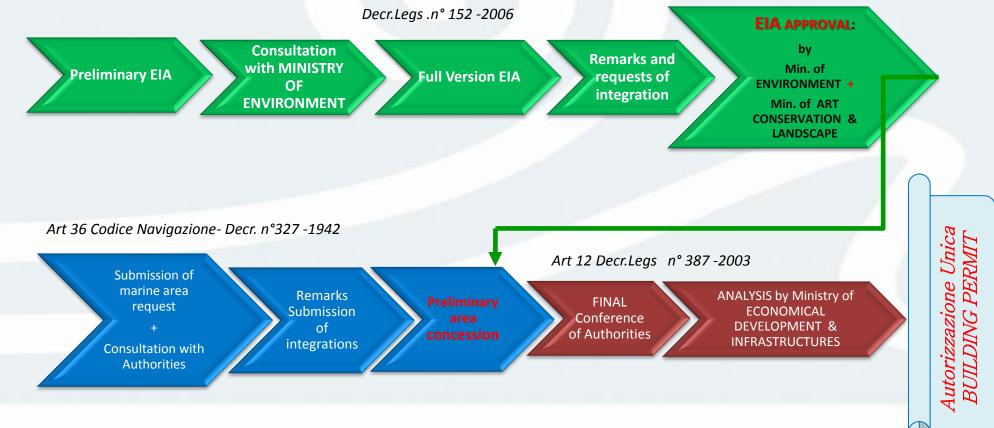
- Large Projects → Higher Investments
- High Capex
- High OPEX

It's even more fundamental a **PRECISE WIND RESOURCES ASSESMENT** in order to reduce the investment risks.

> It's even more important considering **the lower wind resources** available and **accessible** along Adriatic and Italian coasts.

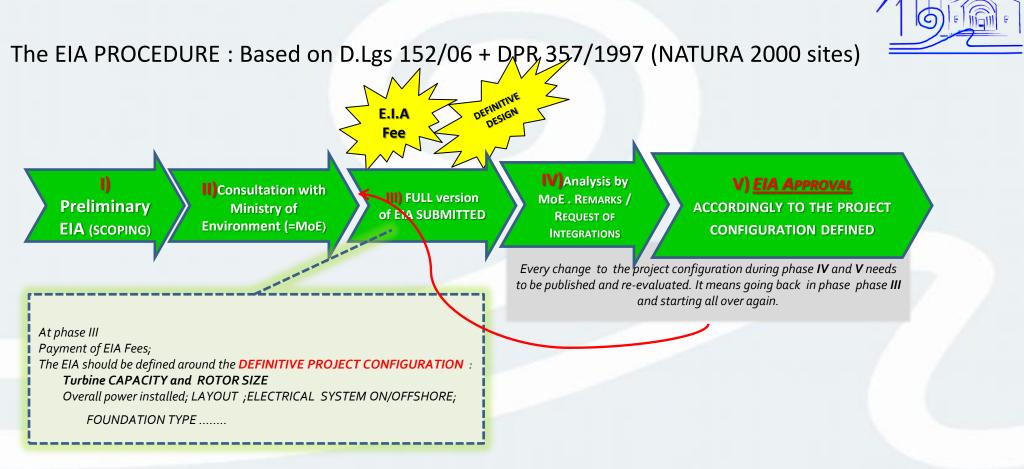
> The proponent can carry on an assessment starting from onshore measurements and proceeding by **steps investments**, adequate to the permitting process evolution.

In France: Detailed study by **ADEME** to determine the most suitable areas for the **3 GW Tender.**


- Wind resource
- Water depth, current and
 - tide
- Protected areas

- Landscape and shore distance
- Sea activities
- Harbor activity & Grid connection

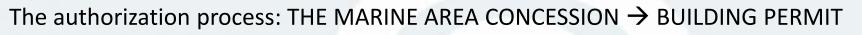
Leonardo Perini

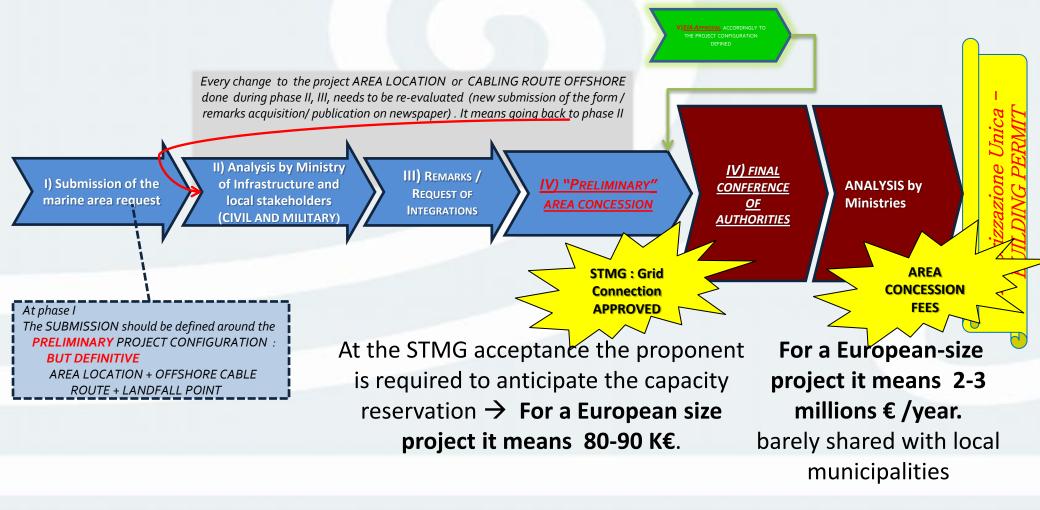


Leonardo Perini

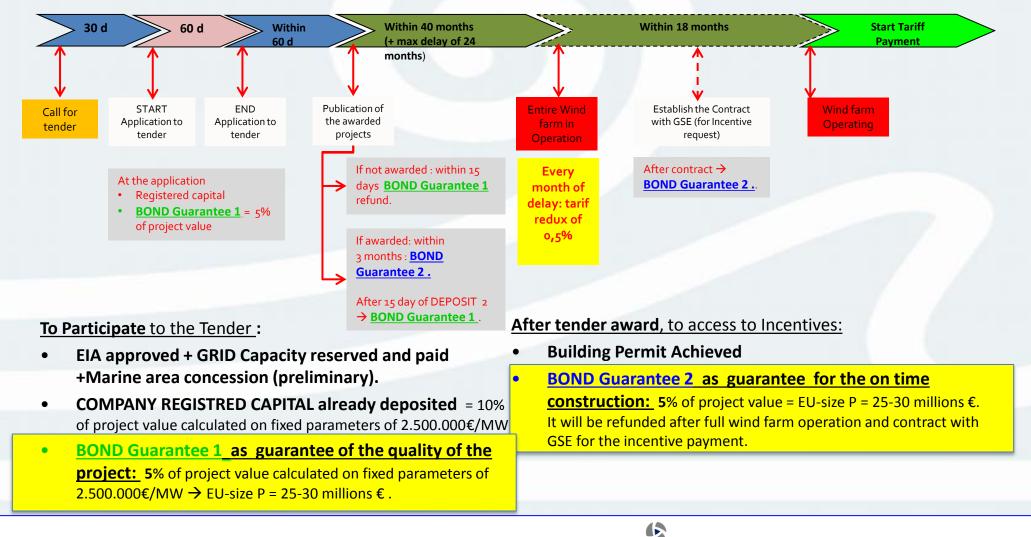
The authorization process:

wpd Italia offshore s.r.l.



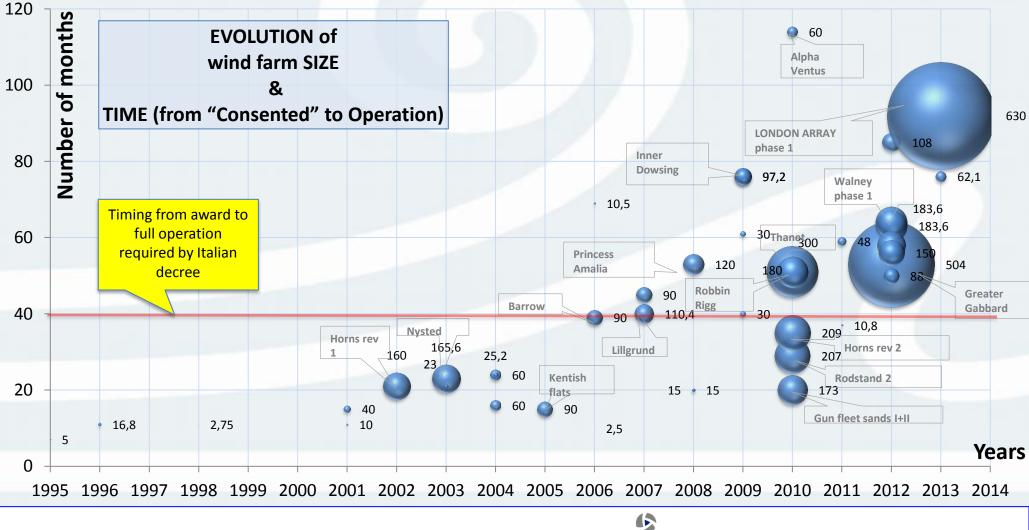

At the EIA submission the proponent is required to pay a fee equivalent to 0,05% of the built **project Value**. \rightarrow For a European-size project it means at least 180-200 K \in as "entry ticket".

Leonardo Perini

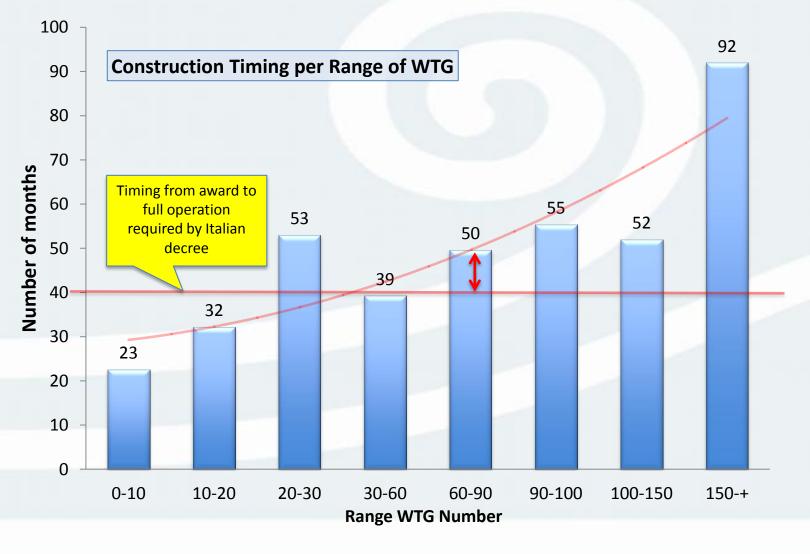


Leonardo Perini

The tender procedure & conditions : D.M.6-7-2012



Leonardo Perini


The construction time of fully commissioned projects in Europe

Leonardo Perini

Nowadays an average size European project (at least 200MW) requires at least 50 months.

This means a most likely reduction of the tariff awarded **at least of 5%** for the entire project life.

Leonardo Perini

What **COMPANIES** should do :

- Develop an <u>ENVIRONMENTALLY</u> SUSTAINABLE project: carrying out exhaustive campaigns to identify the environmental implications for the presence of the wind farm presence (i.e. bird monitoring/marine soil investigations).
- Develop a <u>TECHNICALLY</u> FEASIBLE project: verifying since the beginning of the development the feasibility of the project: wind and marine soils conditions → iterative work for project optimization in particular considering the continuous evolution of turbines models.
- Propose an <u>ECONOMICALLY</u> SUSTAINABLE project: verify the industrial plan including financial costs → work on industrial cost reduction.
- To avoid the pure «develop to sell» logic, just focused only on selling the «building permit», but consider an offshore project as an INDUSTRIAL PROJECT to be developed by a CONSORTIUM of industrial partners with complementary competencies.

Which business environment should be :

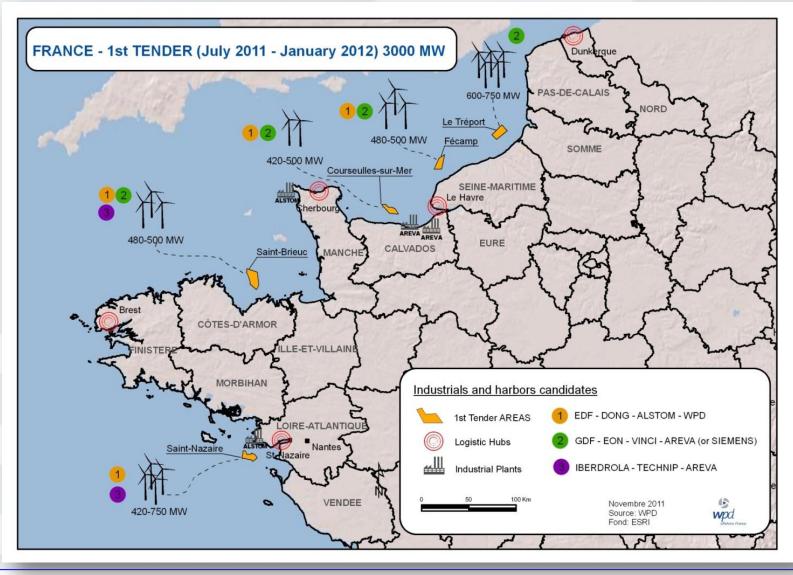
Concerning the EIA procedure:

- To define an authorization process that takes into account the specificities of the wind offshore business: the long authorization process blocks the project on a final configuration (*progetto definitivo*) that can easily become obsolete. It would be enough to approve the most conservative configuration as done in other countries.
- To modify the preliminary EIA fee logic: so that is not proportionate to the power installed, but to the plant productivity.

Concerning the Marine Area Concession procedure:

- To define concession rules taking into account the specificities of the wind offshore business: i.e. Parameters to evaluate concession requests in competition. Expiring of inactive requests.
- Maritime concession fees must be shared with local stakeholders.

Which **business environment** should be : <u>Concerning the Tender :</u>


- Resize warranty to more adequate values
- Remove so stringent timing with something more in line with the current standard

If there is a real objective to develop offshore in Italy, to attract long term investments, it is fundamental to have **stability** in **objectives and procedures**:

- Stated objectives agreed by all authorities involved (MISVE + MIT + MINAMB + MIBAC ...+ Region+ Local Municipalities...) regarding feasibility of offshore wind farm in Italy.
 For example: to be defined a minimum distance beyond which it is possible to propose an offshore project.
- Should be identified AREAS and ZONES where the development of offshore projects is feasible environmentally / technically / industrially /socially /grid capacity and then should be organized tenders

Leonardo Perini

France *Le premier appel d'offre*

The French Government is seeking to foster the development of a long-term French offshore wind industry, which would create jobs in the local areas near the sites of the projects

Leonardo Perini

