

Ravenna, 28 Giugno 2013

From installation of the new experimental small wind turbine of Project Powered to a systematic project of green port in Ravenna

F. Matteucci, M.Rialti
Tozzi Nord // TRE – Tozzi Renewable Energy

CONTENTS

- Port of Ravenna
- Experimental wind campaign and assessment
- VAWT demonstrative installation
- HAWT demonstrative installation
- From demonstrative projects to a systematic ideas of green ports
- The Project REPORT

PORT of RAVENNA - Powered

- Met mast;
- 1,5 kW VAWT met mast;
- 10 kW
 HAWT;

Experimental wind campaign and assessment

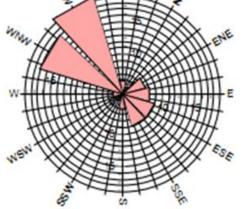
Periods	29/10/2009 31/01/2011	01/02/2011 14/12/2011	21/03/2012 28/06/2013
Sampling	10 min	1 min	1 min
Signals	ws, wd	ws, wd	ws, wd, T, P

Place: Marina di Ravenna (RA) – Diga foranea

Height: 15m


Sensors: ws, wd, T, P

Data Logger: N2

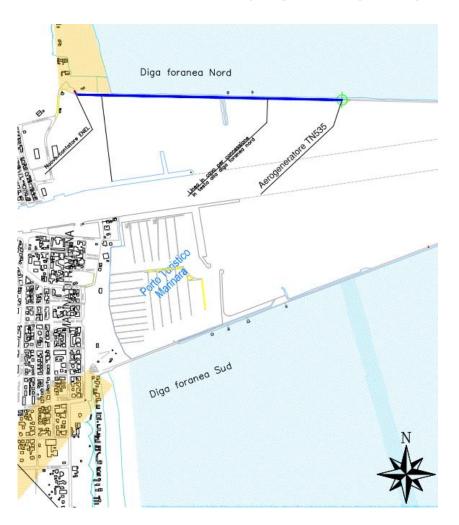

Data since: 29/10/2009

Maintened by: Tozzi Nord S.r.l.

Powered requirements evaluation: not passed but of interest for preliminary assessment.

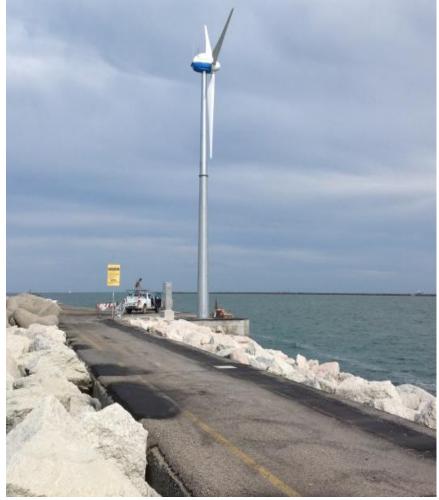
Direction distribution

Aims:


- On-field experience;
- Wind energy exploitation on port areas;
- Wind data acquisition;
- Wind Turbine/Energy data evaluation;

Localization: Porto Corsini (RA) – Harbour dam Permitting:

- The Port of Ravenna Authority (PRA) has been in charge for permitting applications;
- PRA Verification of the State-Region Agreement done. Compliance verification to the land use plan;
- Tozzi Nord was in charge for grid connection application support and technical support for all the demonstrative project;
- Port Authority and IT Navy involved for electrical connection cable use (about 1300 m);
- Custom involved: permission for building in proximity of the State border.



Turbine Architecture:

Type Upwind rotor with active pitch control and active yaw

control

Direction of rotation Clockwise (upwind view)

Number of blades 3

 Rotor diameter
 13.2 m

 Hub height
 15-18-24 m

 Rated power
 9.9 kW

Power regulation Active pitch (pitch to feather)

 Cut-in wind speed
 2.5 m/s

 Cut-out wind speed
 16 m/s

 Rated wind speed
 6.7 m/s

 Rotor diameter
 13.2 m

 Rotor swept area
 136.7 m²

Rotor

 Type
 LWTB535

 Blade length
 6.344 m

 Material
 GFRP

 Lightning protection
 Optional

 Hub
 Fixed (no tilt)

Drive train

Transmission Belt drive

Main bearing Single-row ball bearing

High speed shaft Rotational Speed 225-750 rpm

Low speed shaft Rotational Speed

Grid feed Inverter ABB ACS M1

Generator

Nominal power 11.0 kVA

Type Permanent Magnets Synchronous Generator 8 poles

20-66 rpm

Protection IP54 Insulation class F

Yaw System

Yaw Type Active yaw control

Yaw Rate 3.35 deg/s

Controller

Type PLC

Remote monitoring Tozzi Nord SCADA / Real Time Viewer

UPS 2x12V BACK UP batteries

Breaking System

Aerodynamic brake Collective pitch, (3 pitch linear actuator rates: 14, 21,

48 mm/s

Redundant aerodynamic brake Passive centrifugal system that brings blades to

braking position

Rotor lock Metal pin inserted for maintenance

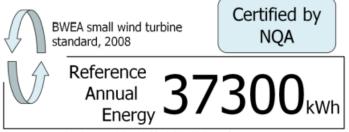
Tower

Tower height 14.6m-17.6m-23.6m

Tower type Polygonal steel Tower, 16 sides, 2 sections

Design wind class IV

Weights

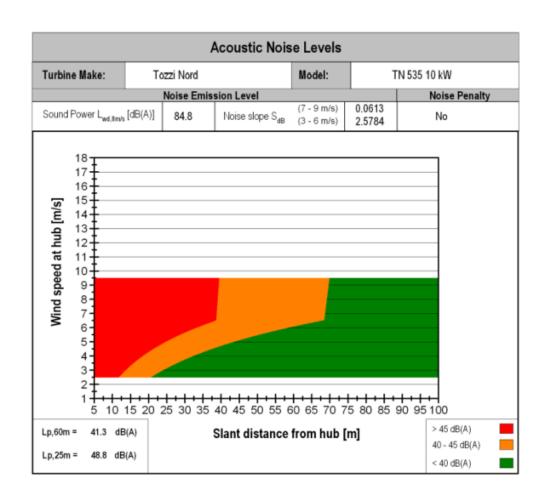

Nacelle (excluding Rotor and Hub) 783 kg Rotor (including Hub) 332 kg

Tower 1300kg (14.6m) - 1750kg (17.6m) - 3350kg (23.6m)

Annual average wind speed of 5 m/s (11mph). Your performance may vary

Aims:

- On-field experience
- Wind energy exploitation on port areas
- Wind Turbine/Energy data acquisition


ESTIMATED ANNUAL ENERGY PRODUCTION (AEP)							
(database A)							
extrapolation of the power curve between the highest			WT:	TN 535			
measured wind speed and the cut-out wind speed			cut-out wind spee	ed: 16 m/s			
with the average power at highest measured wind speed			reference air dens	sity: 1.225 kg/m ³			
			coverage factor k	: 1			
hub height	AEP-measured	Expanded uncertainty of AEP-		AEP-extrapolated			
annual average	(measured	measured		(extrapolated			
wind speed	power curve)		- 1	power curve)			
(Rayleigh)			- 1				
[m/s]	[MWh]	[MWh]	[%]	[MWh]			
4.0	24.59	1.90	7.71	24.59			
5.0	37.36	2.09	5.59	37.41			
6.0	47.24	2.12	4.48	47.59			
7.0	53.52	2.05	3.83	54.54			
8.0	56.39	1.94	3.44	58.30			
9.0	56.61	1.81	3.19	59.40			
10.0	55.03 *	1.66	3.02	58.54			
11.0	52.39 *	1.52	2.91	56.39			

values marked with *: power curve incomplete acc. to IEC criteria for database

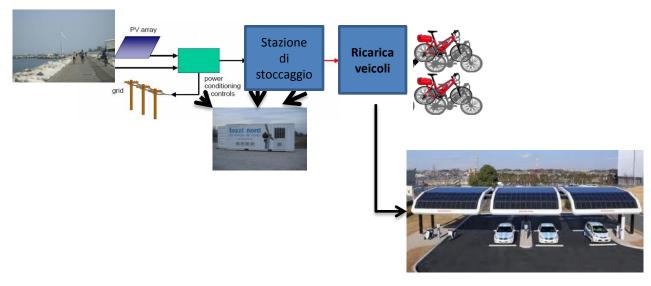
Aims:

 On modern SWT noise it is not an issue anymore.

From demonstrative projects to a systematic ideas of green ports

Port Authorities are hence more and more committed towards a sustainable management of their areas

From demonstrative projects to a systematic ideas of green ports



ZERO – EMISSION MOBILITY

Energy generation – renewable energy (wind, photovoltaic, biomass, geothermal)Energy Storage – energy storage system (ESS) / batteries + power conversion system (PCS)Recharging station – powered by ESS

Mobility – eletric vehicles (bikes, cars, mini-van, buses, forklifts, etc...)

LIFE RE-PORT Project

Partners

Autorità Portuale di Ravenna (Lead Partner)

Autorità Portuale di Taranto

Autorità Portuale di La Spezia

Provincia di Ravenna

Centuria Agenzia per l'Innovazione

CNR - ITAE Messina

TRE – Tozzi Renewable Energy

General Objective

Therefore, the LIFE RE-PORT Project aims at enhancing the role of ports in contributing to the implementation of the EU's Climate Goals towards 20-20-20 targets and the roadmap moving towards an EU low-carbon economy in 2050.

LIFE RE-PORT Project

Project deliverables

- To outline the energy-environment assessment;
- To develop a model of zero-emission actions within the port area providing both technical and financial feasibility framework;
- To demonstrate the model by implementing pilot projects applied to port mobility, validating technologies/approaches to the different ports' conditions and needs;
- -To elaborate a strategy for cooperation among local administrations, stakeholders, public and private actors to support the achievement of the EU's Climate Goals at local/regional level;
- To disseminate results to other port authorities, national and European port networks, port supply chain operators, innovation centres, public environmental agencies, local/regional/national administrators, EU institution, civil society.

Aknowledgements

Ravenna Port Authority

Powered Project

Province of Ravenna

Riferimenti:

Michele.rialti@tozziholding.com Francesco.matteucci@tozziholding.com

