Competition for space and the decline of the majority of fish stocks have speed up the search for improved management tools, including Ecosystem-based Fisheries Management, Marine Protected Areas and Artificial Reefs

The basic components and pathways of energy transfer in a NJ reef food web.

from http://oceanservice.noaa.gov

from: http://ian.umces.edu

from http://artificialreefs.org

The deployment of ARs the Italian coast of the northern Adriatic Sea actually represent an additional tool for fisheries management as they contribute to...

> MITIGATE conflicts for space between small-scale fisheries using set gears, hydraulic dredges and illegal trawling inside the 3 nm from the coast;

> WIDEN the pool of species exploited by the small-scale fisheries and, hence, increasing fishers' income;

> SHIFT an amount of fishing effort from overexploited resources to valuable species (finfish and mussels) that are rare in the muddy bottoms where the artisanal fisheries usually operate.

Small-scale fishermen ask for more and more ARs

FISH ASSEMBLAGES ASSOCIATED WITH GAS PLATFORMS IN THE NORTHERN ADRIATIC SEA (Scarcella et al., 2009)

Wide trawlable area High fishing pressure

Adriatic Sea:

90 platforms

STUDY SITES

RESULTS - LFD

Kolmogorov-Smirnov

test p<0.01

North controls North platforms

South controls South platforms

VENETO

In the northern Adriatic Sea the deployment of gas platforms produces a differentiation in the fish assemblage of the natural soft-bottom. The differentiation is strictly correlated with the composition of the **fish community inhabiting the region** and is mainly due to the occurrence of **reef-dwelling species** around the platforms.

The artificial substrates provided by a gas platform act *de facto* as an **artificial habitat**, attracting and concentrating many species that are rare in the natural soft-bottoms. In addition, considering that the fishery is prohibited in a 500 m radius, the zones surrounding these structures may represent small **Protected Areas** (MPA).

Generic macrovacuolar structures after 1 year from deployment (15 Km offshore ; ALNG, 2010)

The third dimension in the sea: Eco-designed offshore foundation for fishes, sea-grass and multi-use purposes: diving, fishing, tourism, etc.

(Pioch and Féron, 2011)

The fourth dimension: socio-technical and ecological uses. Example of multi-use management of a wind farm: diving, scientific studies, aquaculture, fishing, tourism, etc. (D. Lacroix , 2011)

Main conclusions

- Assessment of the impact for the operational phase of OWF on commercial biological resources/fishery effort in Adriatic is proposed by using quantitative/objective approaches (wide-medium scale, site and species specific)
- Mitigation for OWF is also possible based on present basin knowledges on Artificial Habitat and Mariculture (small scale, site and species specific)

